14 Perpendicularity and Angle Congruence

Definition (acute angle, right angle, obtuse angle, supplementary angles, complementary angles)

An acute angle is an angle whose measure is less than 90 . A right angle is an angle whose measure is 90 . An obtuse angle is an angle whose measure is greater than 90 . Two angles are supplementary if the sum of their measures is 180 . Two angles are complementary if the sum of their measures is 90.

Definition (linear pair of angles, vertical pair of angles)

Two angles $\measuredangle A B C$ and $\measuredangle C B D$ form a linear pair if $A-B-D$. Two angles $\measuredangle A B C$ and $\measuredangle A^{\prime} B C^{\prime}$ form a vertical pair if their union is a pair of intersecting lines. (Alternatively, $\angle A B C$ and $\measuredangle A^{\prime} B C^{\prime}$ form a vertical pair if either $A-B-A^{\prime}$ and $C-B-C^{\prime}$, or $A-B-C^{\prime}$ and $C-B-A^{\prime}$.)

Theorem If C and D are points of a protractor geometry and are on the same side of $\overleftrightarrow{A B}$ and $m(\measuredangle A B C)<m(\measuredangle A B D)$, then $C \in \operatorname{int}(\measuredangle A B D)$.

1. Prove the above theorem.
[Theorem 5.3.1, page 104]
Theorem (Linear Pair Theorem). If $\angle A B C$ and $\measuredangle C B D$ form a linear pair in a protractor geometry then they are supplementary.
2. Prove the above theorem.
[Theorem 5.3.2, page 105]
3. If $A^{\prime}-V-A, B^{\prime}-V-B$, and $\measuredangle A V B$ is a right angle, then each of $\measuredangle A V B^{\prime}, \measuredangle A^{\prime} V B$, and $\measuredangle A^{\prime} V B^{\prime}$ is a right angle.

Theorem In a protractor geometry, if $m(\measuredangle A B C)+m(\measuredangle C B D)=m(\measuredangle A B D)$, then $C \in \operatorname{int}(\measuredangle A B D)$.
4. Prove the above theorem.
[Theorem 5.3.3, page 106]
Note that the result about distance that corresponds to above Theorem is false. If $A B+B C=A C$ it need not be true that $B \in \operatorname{int}(A B)$.

Theorem In a protractor geometry, if A and D lie on opposite sides of $\overleftrightarrow{B C}$ and if $m(\measuredangle A B C)+m(\measuredangle C B D)=180$, then $A-B-D$ and the angles form a linear pair.
5. Prove the above theorem.

Definition (perpendicular lines, perpendicular rays, perpendicular segments)

Two lines ℓ and ℓ^{\prime} are perpendicular (written $\ell \perp \ell^{\prime}$) if $\ell \cup \ell^{\prime}$ contains a right angle. Two rays or segments are perpendicular if the lines they determine are perpendicular.
6. If a is a segment, ray, or line and b is a segment, ray, or line, then $a \perp b$ implies $b \perp a$.

Theorem If P is a point on line ℓ in a protractor geometry, then there exists a unique line through P that is perpendicular to ℓ.
7. Prove the above theorem.
8. In the Poincaré Plane, find the line through $B(3,4)$ that is perpendicular to the line ${ }_{0} L_{5}=\left\{(x, y) \in \mathbb{H} \mid x^{2}+y^{2}=25\right\}$.
[Example 5.3.6, page 107]

Corollary In a protractor geometry, every line segment $\overline{A B}$ has a unique perpendicular bisector; that is, a line $\ell \perp \overline{A B}$ with $\ell \cap \overline{A B}=\{M\}$ where M is the midpoint of $\overline{A B}$.
9. Prove the above corollary.

Theorem In a protractor geometry, every angle $\measuredangle A B C$ has a unique angle bisector that is, a ray $\overrightarrow{B D}$ with $D \in \operatorname{int}(\measuredangle A B C)$ and $m(\measuredangle A B D)=m(\measuredangle D B C)$.
10. Prove the above theorem.

Definition (angle congruence)

In a protractor geometry $\{\mathcal{S}, \mathcal{L}, d, m\}, \measuredangle A B C$ is congruent to $\measuredangle D E F$ (written as $\measuredangle A B C \cong \measuredangle D E F$ if $m(\measuredangle A B C)=m(\measuredangle D E F)$.
11. Congruence of angles is an equivalence relation on the set of all angles.
12. Prove that any two right angles in a protractor geometry are congruent.

Theorem (Vertical Angle Theorem). In a protractor geometry, if $\measuredangle A B C$ and $\measuredangle A^{\prime} B C^{\prime}$ form a vertical pair then $\measuredangle A B C \cong \measuredangle A^{\prime} B C^{\prime}$.
13. Prove the above theorem.

Theorem (Angle Construction Theorem). In a protractor geometry, given $\measuredangle A B C$ and a ray $\overrightarrow{E D}$ which lies in the edge of a half plane H_{1}, then there exists a unique ray $\overrightarrow{E F}$ with $F \in H_{1}$ and $\measuredangle A B C \cong \measuredangle D E F$.
14. Prove the above theorem.

Theorem (Angle Addition Theorem). In a protractor geometry, if $D \in \operatorname{int}(\angle A B C)$, $S \in \operatorname{int}(\measuredangle P Q R), \angle A B D \cong \measuredangle P Q S$, and $\measuredangle D B C \cong \measuredangle S Q R$, then $\measuredangle A B C \cong \measuredangle P Q R$.
15. Prove the above theorem.

Theorem (Angle Subtraction Theorem). In a protractor geometry, if $D \in \operatorname{int}(\measuredangle A B C)$,
$S \in \operatorname{int}(\measuredangle P Q R), \measuredangle A B D \cong \measuredangle P Q S$, and
$\measuredangle A B C \cong \measuredangle P Q R$, then $\measuredangle D B C \cong \measuredangle S Q R$.
16. Prove the above theorem.
17. Show that if $\triangle A B C$ is in Poincaré plane with $A(0,1), B(0,5)$, and $C(3,4)$ (this triangle we had earlier), then $(A C)^{2} \neq(A B)^{2}+(B C)$.
Thus the Pythagorean Theorem need not be true in a protractor geometry.
18. In \mathcal{H} find the angle bisector of $\measuredangle A B C$ if $A=(0,5), B=(0,3)$ and $C=(2, \sqrt{21})$.
19. Prove that in a protractor geometry $\measuredangle A B C$ is a right angle if and only if there exists a point D with $D-B-C$ and $\measuredangle A B C \cong \measuredangle A B D$.
20. In the Taxicab Plane let $A=(0,2)$, $B=(0,0), C=(2,0), Q=(-2,1), R=(-1,0)$ and $S=(0,1)$. Show that $\overline{A B} \cong \overline{Q R}, \measuredangle A B C \cong \measuredangle Q R S$, and $\overline{B C} \cong \overline{R S}$. Is $\overline{A C} \cong \overline{Q S}$?

15 Euclidean and Poincaré Angle Measure

In this optional section we shall carefully verify that the Euclidean and Poincaré angle measures defined in Section 13 actually satisfy the axioms of an angle measure. The key step will be the construction of an inverse cosine function. This will involve techniques quite different from those of the rest of this course. As a result, you may choose to omit this section knowing that the only results that we will use in the sequel are that m_{E} and m_{T} are angle measures and that the cosine function is injective. On the other hand, it is interesting to see a variety of mathematical techniques tied together to develop one concept as is done in this section. The material on the construction of Euclidean angle measure is taken from Parker [1980].

Precisely what are we assuming in this section? We are assuming the standard facts about differentiation and integration but nothing about trigonometric functions. This will force us to consider the notion of an improper integral in order to define the inverse cosine function. Since general results about differential equations may not be familiar to the reader, we shall need to develop some very specific theorems regarding the solutions of $y^{\prime \prime}=-y$. (In calculus we learned that both $\sin (x)$ and $\cos (x)$ are solutions of this differential equation. That is why we are interested in this equation.)

Definition (improper integral)

Let $f(t)$ be a function which is continuous for $c \leq t<d$ and which may not be defined at $t=d$. Then the improper integral $\int_{c}^{d} f(t) \mathrm{d} t$ converges if $\lim _{b \rightarrow d^{-}} f(t) \mathrm{d} t$ exists. In this case, we say $\lim _{b \rightarrow d^{-}} f(t) \mathrm{d} t=\int_{c}^{d} f(t) \mathrm{d} t$.

Lemma The improper integral $\int_{0}^{1} \frac{\mathrm{~d} t}{\sqrt{1-t^{2}}}$ converges.
[Lemma 5.4.1, page 110]
A similar argument shows that the improper integral $\int_{-1}^{0} \frac{d t}{\sqrt{1-t^{2}}}$ converges so that $\int_{0}^{-1} \frac{d t}{\sqrt{1-t^{2}}}$ also exists. We define a number p to be twice the value of the integral in above lemma: ...
...(see book, pages 109-123)...

Okomitost i podudarnost uglova
komplementenc: a tal.
Definicija rostriuyao, pravi uyao, tupi uyao, suplementani uglovi, Ośtri uyao je uyao čija je mjera mauja od 90. Pravi uyao je uyao čija je mpera jednaka 90. Tupi ugao, e uyao čija je mjera réa od 90. Dra ugla su supleme_ ntarna ako suma ujihowih mpera iznosi 180. Dva uyla su komplementarna ako, e suma njihonih mera 90.

Definicija (linearni par uylova, rertikului par uylona)
Dra uyla $\Varangle A B C ; \Varangle C B D$ formiraju linearan par ako, e $A-B-D$. Dra ugla $\Varangle A B C$; $\Varangle A^{\prime} B C^{\prime}$ formiraju rertikatan par ako e njikora unija par pravih ko, e se sijeku.

Teorema
Ako su C; D tacke protractor geometrije, ato su sa ste strane prave $p(A, B)=\overleftrightarrow{A B}$; ato je $m(\Varangle A B C)<m(\Varangle A B D)$ tadu je $c \notin \operatorname{int}(\Varangle A B D)$.
(\#) Dokazati teoremu iznad.
R_{j}.

Ēelino upotediti spẹd teor.
Teor.
$\rho \in$ int $(\nmid A B C)$ akko
A i Perstherty $\overrightarrow{B C}$; Ci. Psalibe ste. pr. $\overleftrightarrow{B A}$

Skica dokuza:
Za tuike A, C moyuí je jedan od s/jedeća tre slacaja:
$1^{\circ} A ; C$ su sa iste strane $\mu(B, D)=\overrightarrow{B D}$
$2^{\circ} \mathrm{C} \in \overleftrightarrow{B D}$
$3^{\circ} A ; C$ su sa razlicitich strana prave $\overleftrightarrow{B D}$.
Pokataiems da sluciajeri $2: 3$ nisu mogucia.
$C \in \overleftrightarrow{B D}, \quad C$ i D sa iste str. $\overleftrightarrow{A B} \Rightarrow C \in \operatorname{int}(\overrightarrow{B D}) \rightarrow$

$$
\Rightarrow \quad \Varangle A B C=\Varangle A B D ; m(\Varangle A B C)=m(\Varangle A B D)
$$

\#koutradikerja
A i C sur rapl. str. $\overleftrightarrow{B D} \xrightarrow{\text { raedylyon of pac. }} \Rightarrow D \in i n t(\Varangle A B C) \Rightarrow$

$$
\begin{aligned}
& \Rightarrow m(\Varangle A B D)+m(\Varangle D B C)=m(\Varangle A B C)<m(\Varangle A B D) \quad \Rightarrow \\
& \Rightarrow m(\Varangle D B C)<0 \text {. \#honturdikeij; }
\end{aligned}
$$

Pa jedina moyninost, ie de su A i C su iste ritune plave $\overrightarrow{B D}$ $\Rightarrow \quad C \sin t(\forall A B D)$.

Teoremg (teorem linearnog para)
Ako uylovi $\Varangle A B C$ i $\Varangle C B D$ formiraju linearni par u protractor yeometriji tada su oni suplementarni.
(\#) Dokazali teoremu iznad.
R_{j}
Skica dotuza:

$$
\begin{aligned}
& m(\Varangle A B C)=\alpha \\
& m(\Varangle \subset B O)=B
\end{aligned}
$$

Pok. $\alpha+\beta=180$ (potapaimon da $\alpha+\beta<180 ; \alpha+\beta>180$ vodi a kontandikijal)
Pretp. $\alpha+\beta<180$,
Prena aksiomn tonsturkcije ugla $\exists!\overrightarrow{B E}$ su taith E na istog; str. pr. $\overleftrightarrow{A B}$ kao C

$$
m(\forall A B E)=\alpha+\beta
$$

Preth. teor $\Rightarrow C \in \sin (\Varangle A B E) \Rightarrow m(\Varangle A B C)+m(\Varangle C B E)=m(\Varangle A B E)$
Time

$$
\alpha+m(\not \subset B E)=\alpha+\beta \Rightarrow m(\Varangle \subset B E)=\beta
$$

Eicras sa iste strane prave 40

Sa druye str. EGint $(X C B D)$ (ZASTTO?) pa je

$$
\begin{aligned}
& m(\Varangle \subset B E)+m(X E B D)=m(\Varangle \subset B D) \quad \Rightarrow \\
& \Rightarrow B+n(X E B D)=B \quad \Rightarrow \quad m(\Varangle E B D)=0,
\end{aligned}
$$

\#koytradikenj.
Prena tome sluice; $\alpha+\beta<180$ nije moguc'. ruprangh je unjeh oeta odmber
Sad pretpostavino da je $\alpha+\beta>180$.
(nastoruat dobatar pogledy. a ky'iri, Teoverar 5.3.2)
$\left.\begin{array}{l}\alpha<180 \\ \beta<180\end{array}\right\} \Rightarrow \alpha+\beta<360 \Rightarrow 0<\alpha+\beta-180<180 \quad \gamma=\alpha+\beta-180 \Rightarrow \beta<180 \quad \gamma<\alpha$
Neka je H poluracan sa ivirom y $\overrightarrow{A D}$ ko, a scechài tuchen C,
Prema Protuactor partulatu $\exists!\overrightarrow{B F}$ ad. $F \in H ; m(\not \subset A B F)=\gamma$
$C_{1} F$ su su ishe strane prave $\overleftrightarrow{A D} \quad i m(\nexists A B F)<M(\notin A B C) \Rightarrow F \in \sin (\nmid A B C)$
(\#) Ako je $A^{\prime}-V-A, B^{\prime}-V-B$ i $4 A V B$ je pravi uyao, pokazati da je tada sraki od uglora $\Varangle A V B, \Varangle A^{\prime} V B ;$ \& A'V B^{\prime} pravi uyao.
R_{j}.
$\Varangle A V B$ prav ayao $\Rightarrow m(\Varangle \not \subset V B)=90$. Primétimo da $\Varangle A V B$;
 $4 A V B^{\prime}$ formiva lineqran par uylova, pa su on: suplementamij tho zuacir da广

$$
m(4 B V A)+m\left(\$ A V B^{\prime}\right)=180
$$

(vidi ridi prethodyu beoreny teonenal.

Kako $\mu \mathrm{m}(\Varangle \Delta \vee A)=90$ to, e oudu $m\left(\Varangle A \vee B^{\prime}\right)=90 \Rightarrow \not \approx A \sqrt{\prime}{ }^{\prime}, j e$ prar uyeo,
Slicuo zer druga dua uyla.

Teorema
Uprotractor geometriji, ato e $m(\Varangle A B C)+m(\Varangle C B D)=m(\Varangle A B O)$ tada je $c \in \operatorname{int}(\Varangle A B D)$.
(\#) Dokazati teoremu izuad.
R_{j}
Sticu dokaza: (dokaz polvaži u kujiki, Teovem 5.3.3)

D°

Kortudikecipens dems pot. da C_{1}, D pripadaju istoj strani prave $\overrightarrow{A B}$. Petyortovino de c_{i}. D pipadjén varlio. strvanam prace $\leftrightarrows \rightarrow{ }_{B}$ $A \notin \overleftrightarrow{B C}, \quad D \notin \overleftrightarrow{B C}$

Ato A i D pripadaju isto; strani prave $\overleftrightarrow{B C} \Rightarrow A \in$ int ($\Varangle C B D$) ZASTO?

$$
\Rightarrow \quad m(\Varangle C B A)+m(\Varangle A B O)=m(\Varangle \subset B D)<m(\Varangle A B D)
$$

\# koythe dikiga
Prena bome, $A ; D$ su sa razlicitich strang $\stackrel{B}{B C}$

leaberims E id. $A-B-E$ i primetino de su $E ; D$ sa iste strane prave $\overleftrightarrow{B C}$

$$
\begin{aligned}
& \Rightarrow E \in \operatorname{int}(\Varangle C B D)(Z A T T O ?) \quad \Rightarrow \\
& m(\Varangle C B E)+n(\notin E B D)=m(\Varangle C B O)
\end{aligned}
$$

Kalo $\Varangle A B C$; $\triangle C B E$ folrmiraju lineavan par, $m(\Varangle C B F)=180-m(4 A B C)$

$$
\begin{aligned}
& \Rightarrow \quad 180-m(\Varangle A B C)+m(\Varangle E B D)=m(\Varangle C B D) \Rightarrow 180+m(X E B D)=\underbrace{=m(\Varangle A B)}_{=m(\$ A B C J+m(A C B D)} \\
& \Rightarrow m(\Varangle A B D)>180 \\
&
\end{aligned}
$$

Prena tome C_{i} I ne mogn biti sa radticitily strana prave $\overleftrightarrow{A B}$. Ted apoted, 53.1

Teorema
Uprotractor geometriji, ato A; D pripadaju razlicistinn stranama prave $\overleftrightarrow{B C}$ i ako, e $m(\Varangle A B C)+m(\Varangle C B O)=180$ tada $A-B-D$ i uylovi formiraju linearan par.
\#Dokazati teovenu iznad.
R_{j}.

Uredimo oznake $\alpha=m(\triangle A B C)$

$$
B=m(\Varangle C B D)
$$

$$
\alpha+\beta=180
$$

Neka, e $D^{\prime} \in \overleftrightarrow{A B}, A-B-D^{\prime}$
Primjétimo da ugloui $\triangle A B C$; $\Varangle C B D^{\prime}$ formira;u linearan par.
Prisjétino se
Teor. Ako $\Varangle A B C ; \Varangle C B D$ form. li4. par. \Rightarrow $\triangle A B C$: $\& C B D$ su supbu. uylon
Na os rom (1) inam du $m(\Varangle A B C)+m\left(\Varangle C B D^{\prime}\right)=180^{\circ} \Rightarrow$

$$
\Rightarrow \alpha+m\left(\Varangle C B D^{\prime}\right)=\alpha+\beta \Rightarrow m\left(\Varangle C B D^{\prime}\right)=\beta
$$

Primjetime da D; D^{\prime} pripaduju isboj strani prave $\overleftrightarrow{B C}$. Sobtivom du je $m(4 \subset B D)=及=m\left(\& \subset B D^{\prime}\right)$ to sluia,ivi da, e $D \in \operatorname{int}\left(\Varangle C B D^{\prime}\right) ; D^{\prime} \in \operatorname{int}(\Varangle C B D)$ nisu moguda $\Rightarrow D \in \operatorname{int}\left(\overrightarrow{B D^{\prime}}\right)$

$$
\Rightarrow \quad A-B-D
$$

iuyloui $Y A B C$ i $4 C B D$ formiraju lineami par.

Definicija (okomitost)
Drije prave l i l^{\prime} su otomite (ili normalie) (sto ozna çaramo sa $l \perp l^{\prime}$) ako $l \cup l^{\prime}$ sadräi prav uyao.
Drije poluprave ili dva seymenta su okomita ako su okonite prave koje one odreduju.
\#Ako je a duz̈ (poluprava ili prava) i ako je b duz̈ (poluprara ili prara) tada $a \perp b$ poulači da $b \perp a$.
R_{j}
Pretpostavimo der je a na pravo; $\overleftrightarrow{A B}$, a daj e b na pravo; $\overleftrightarrow{C D}$. Tadu
$a \perp b$ akko $\overleftrightarrow{A B} \perp \overleftrightarrow{C D}$ akko $\overleftrightarrow{A B} \cup \overleftrightarrow{C D}$ sudrzil prav uyao akko $\overleftrightarrow{C D} \cup \overleftrightarrow{A B}$ sudvìi prav ugao aklo $\overleftrightarrow{C D} \perp \overleftrightarrow{A B}$ akko $b \perp a$.

Prence tome $a \perp b \Leftrightarrow b \perp a$.

Teorem
Za datu pravu p i tacku $B \in \mu$ u protractor peometriji, postoji jedinstuena prava $\mu^{\prime} k_{0 j}$ a sadrच̄i taciku B i ima osobinu da $p \not \perp^{\prime}$.
(\#) Dokazati teoremn iznad.

Neta je $\mu=\mu(A B)=\overleftrightarrow{A B}$. Oznacino sa H poluravan sa vicom u μ. Rena arobini (ii) Protructor portulata porkoji jedinstiena poluprava $\overrightarrow{B C} t \cdot d$. $C \in H, i \operatorname{m}(\Varangle A B C)=90$. Prena tome $\stackrel{B}{B C}$ je plana kroz taikn B koja, e otomiter na n. Drugim recina $\mu^{\prime}=\overrightarrow{B C}$. ($\left.\mu \cup_{\mu}\right)$ subtroc piav uyeo $\left.\Rightarrow \mu \nrightarrow \lambda\right)$
Pokuzimo ecinstrenart prave. (μ up) sation prava μ.
Neku $\mu \mathrm{m}$ prava kroz taiku B ko, ρ okomiter nu pran
Kako $m \cap p=\{B\} ; m \neq \mu \Rightarrow \mathrm{t} . \mathrm{d} . D \in m, D \in H$. $m \perp \mu \Rightarrow$ GBD je pravi uyaO (vidi, jedan od prethoduih zadutaku)

$$
\Rightarrow m(\Varangle A B D)=90
$$

Zbog jedinstuenosti prave $\overrightarrow{B C}$, inamo da $\boldsymbol{j} \overrightarrow{B C}=\overrightarrow{B D}$. Prena to ne $m=\overleftrightarrow{B C}$, ; $\overleftrightarrow{B C}$ je pedinstreven prans kroz taikn B koga, e okomita na N.
(\#) U Poincaré-ovo; ravui, pronaci pravu kroz taicku $B(3,4)$ koja e okomita na pravu

$$
0_{5}=\left\{(x, y) \in H \| \mid x^{2}+y^{2}=25\right\} .
$$

R_{j}.

$\mu_{1}: y=\frac{4}{3} x \Rightarrow \quad k_{2}=-\frac{3}{4} \quad\left(k_{2}\right.$ je $k_{0} e$ ticijent pravica prace $\left.\mu_{2}\right)$

$$
\left.\begin{array}{rl}
\mu_{2}: y=k_{2} x+n \\
B(3,4)
\end{array}\right\} \Rightarrow 4=-\frac{3}{4} \cdot 3+n \Rightarrow 16=-9+4 n ~ \begin{aligned}
4 n & =25 \\
\mu_{2}: y=-\frac{3}{4} x+\frac{25}{4} \quad \begin{array}{l}
y=0 \\
\Rightarrow
\end{array} \frac{3}{4} x=\frac{25}{4} \Rightarrow x=\frac{25}{3} & n=\frac{25}{4}
\end{aligned}
$$

Centar prave koje tratimo je $c=\frac{25}{3}$

$$
\begin{aligned}
& A\left(\frac{25}{3}, 0\right) \quad A B=\sqrt{\left(3-\frac{25}{3}\right)^{2}+(4-0)^{2}}=\sqrt{\frac{16^{2}}{9}+16}=\sqrt{\frac{16^{2}+16 \cdot 9}{9}}=\frac{20}{3} \text { (3,4)} \text { 位 }
\end{aligned}
$$

Time suo dobili da $\frac{25 L}{3} \frac{20}{3}$ vjerovatuo zadoudjave dete arobine. Oro sad trebamo proyeriti koristed; formule it pethodue letcije.

Pa de bi proujerili dee li je dobijens vjeverie dobro, pored tacke B treba,u nam tacke $P ; Q$ b.d. $P \in . L_{5}, Q \in \frac{\frac{25}{3}}{} L_{\frac{20}{3}}$.
$L_{5}: x^{2}+y^{2}=25$

$$
\begin{gathered}
x=0 \Rightarrow y=5 \\
P(0,5)
\end{gathered}
$$

$$
\begin{aligned}
& \frac{25}{3} L_{\frac{20}{3}}:\left(x-\frac{25}{3}\right)^{2}+y^{2}=\frac{20}{3} \\
& x=\frac{22}{3} \quad \frac{22}{3}-\frac{25}{3}=\frac{22-25}{3} \\
&=\frac{-3}{3}=-1 \\
& \| \\
& y=\sqrt{\frac{20}{3}-1}=\sqrt{\frac{17}{3}} \\
& Q\left(\frac{22}{3}, \sqrt{\frac{17}{3}}\right) \sqrt{x}=\frac{19}{3}
\end{aligned}
$$

V
Sad trebams itraiunati mjern uyla $\Varangle P B Q$.

$$
y=\sqrt{\frac{8}{3}}
$$

Za bu surku nam proo treba $T_{B P} i T_{B Q \ldots .}$

Corolar
Uprotractor geometriji svaka du $\bar{z} \overline{A B}$ ima ediurtuenu simetralu; tj. pravu $B \perp \overline{A B}$ taha da ss $\overline{A B}=\{M\}$ gde e M sredina duzi $\overline{A B}$.
(\#) Dokazati Corolar izuad.
R_{j}
Od ranije znamo da svata du $\bar{z} \overline{A B}$ ima riedinu M, i de je taikn M edinstrena. Prisjefino se ukintho dotazer ove torduje.

Neka ee $f: \overleftrightarrow{A B} \rightarrow \mathbb{R}$ koordinatui sistem takur da je $f(A)=0, f(B)=6$ Definivimo $M \in \overleftrightarrow{A B}$ sa $M=f^{-1}\left(\frac{b}{2}\right)$. Kato, e f surjekcija (na \mathbb{R}), Mpostojis i kako je f $1-1$ M ee edinstreno odredera.

Pa ako je deta da $\bar{q} \overline{A B}$, neku je M skedinue duỳi.
Prena prethoduon teonemu: Za dabu prame l tacku BG ρ u protrac. geom., pastoji. jedinstr. prava e^{\prime} t.d. seli i $1 \perp l^{\prime}$.

Sad kako je $M \in \overleftrightarrow{A B}$ to prena teonem; innad postoji jedinstrena prava s t.d. $M \in S ; s \perp \overleftrightarrow{A B}$.
Tadafei $s \perp \overline{A B} ; \quad s \cap \overline{A B}=\{a\}$, gde je M redine dazi: $\overline{A B}$.

Definicija
Uprotractor geometriji $\{\mathscr{S}, \mathscr{L}, d, m\}$, uyao $\Varangle A B C$,e podudaran sa uylom $\Varangle D E F$ (ovo oznaianamo sa $\Varangle A B C \cong \Varangle D E F)$ ako je

$$
m(\Varangle A B C)=m(\Varangle D E F)
$$

(\#)
Pokazati da su sraka dva prava ugla u protractor peometrij; jeduaka.
K_{j}
Neka $54 \not \Varangle A B C$ i $\Varangle P Q R$ proizuoline du prava ugla.

$$
\left.\begin{array}{r}
\Varangle A B C \text { prav } \Rightarrow m(\Varangle A B C)=90 \\
\Varangle P Q R \text { prav } \Rightarrow m(\Varangle P Q R)=90
\end{array}\right\} \Rightarrow m(\Varangle A B C)=m(\Varangle P Q R)
$$

(\#) Konyruencija uylora je relacija ekvivalencije na skupu svih uylora.
k_{j}
REFLEKSIVNOST
Kako je $m(\Varangle A B C)=m(\Varangle A B C)$ to je $\Varangle A B C \cong \Varangle A B C$
SIMETRIČNOST

$$
\begin{aligned}
\Varangle A B C & \cong \Varangle P Q R \Rightarrow m(\Varangle A B C)=m(\Varangle P Q R) \\
& \Rightarrow m(\Varangle P Q R)=m(\Varangle A B C) \Rightarrow
\end{aligned} \Rightarrow \not \Varangle P Q R \cong \Varangle A B C
$$

Tranzitivnost

$$
\begin{aligned}
& \Varangle A B C \cong \\
& \Rightarrow P Q Q R \quad ; \quad \Varangle P Q R \cong \Varangle D E F \Rightarrow \\
& \Rightarrow m(\Varangle A B C)=m(\Varangle P Q R) ; m(\Varangle P Q R)=m(\Varangle D E F) \\
& \Rightarrow m(\Varangle A B C)=m(\Varangle D E F) \Rightarrow \Varangle A B C \cong \Varangle D E F
\end{aligned}
$$

Teorem (teorom rertikulnog uyla)
Uprotractor geometriji, ako $\Varangle A B C ; ~ \Varangle A^{\prime} B C^{\prime}$ formina rertikalan par tada $\Varangle A B C \cong \Varangle A^{\prime} B C$!
(\#) Dokazati teovern iznad.
R_{j}.

Pretportavizo de je

$$
A-B-C^{\prime} ; A^{\prime}-B-C
$$

Primetime da a tom Slucaju uglovi $\Varangle A B C$ $i \& C B C$ formirg; linearan par. \Rightarrow

$$
m(4 A B C)+m\left(4 C B C^{\prime}\right)=180^{\circ}
$$

S druge strane $\Varangle\left(C B C^{\prime}\right)$; $\Varangle A^{\prime} B C^{\prime}$ form lin pur.

$$
m\left(\& C B C^{\prime}\right)+m\left(\nless A^{\prime} B C^{\prime}\right)=180^{\circ} \quad \ldots(2)
$$

(1) $:(2) \Rightarrow m(\Varangle A B C)=m\left(4 A^{\prime} B C^{\prime}\right) \quad \Rightarrow \quad \not \subset A B C \cong \Psi A^{\prime} B C^{\prime}$,

Teorem (teorem konstrukcije ugla)
\cup protractor yeometriji, za dati ugao $\Varangle A B C$ i poluprava $\overrightarrow{E D}$ koja pripada ivici poluravni H_{1}, postoji ediustuena poluplala $\overrightarrow{E F}$ takua da $F \in H_{1}$ i $\Varangle A B C \cong \Varangle D E F$.
\#
Dokazati teoremu iznad.
R_{j}.

Prisjetimo ve definicije mjere uyla (to. Protractor poskula ha) rofiks. poz. real. br., \mathcal{A} slap suih uylona, $m: \mathcal{A} \rightarrow \mathbb{R}$
(i) $\Varangle A B C \in \mathcal{A} \Rightarrow 0<m(\forall A B C)<r_{0}$
(ii) $\overrightarrow{B C}$ irrca u poluravni H_{1}; i ako, e θ real. bro;: $0<\theta<r_{0}$ $\Rightarrow \exists$ fediust. po prana $\operatorname{pp}[B, A)=\overrightarrow{B A}$ su arob. $A \in H_{1}, m(\notin A B C)=\theta$
(ii) $D \in \operatorname{int}(\Varangle A B C) \Rightarrow m(\Varangle A B D)+m(\Varangle D B C)=m(\Varangle A B C)$.

Prena osobini (ii) protractor portulater $\exists!\overrightarrow{E F}$ sa orobinamen $d u \quad F \in H_{1} ; m(\Varangle A B C)=m(\Varangle D E F) \quad \Rightarrow \quad \Varangle A B C \cong \nsubseteq D E^{-} F$

Teorem (teorem za oduzimanje uylova)
U protractor geometriji, ako, e $D \in \operatorname{int}(\triangle A B C), S_{\operatorname{in}}(\nmid \Varangle P Q R)$, $\Varangle A B D \cong \Varangle P Q S ; \quad \Varangle A B C \cong \Varangle P Q R$ ta $d a \quad \Varangle D B C \cong \Varangle S Q R$.
(\#) Dokazati teoremu iznad.
R_{j}.

prence arobin: (iii) $\stackrel{\text { iz def. Protiact. parculaly }}{\Rightarrow}$
$D \in \operatorname{in}((\Varangle A B C) \xrightarrow{\text { iz def }}$

$$
\begin{equation*}
m(\Varangle A B D)+m(\Varangle \triangle B C)=m(\Varangle A B C) \tag{1}
\end{equation*}
$$

pren cos. (iii) it
$S \in \operatorname{int}(\Varangle P Q R) \xrightarrow{\text { Dof. }}$ protrac. pait

$$
\Varangle A B D \cong \Varangle P Q S \Rightarrow m(\Varangle A B D)=m(\Varangle P Q S)
$$

Oznailino ove drije upere sa er
tj. $m(\nexists A B D)=\omega$

$$
m / X P Q S S=\omega
$$

$\left.\begin{array}{c}(1) \Rightarrow \omega+m(\Varangle D B C)=\lambda \\ (2) \Rightarrow a+m(\Varangle S Q R)=\lambda\end{array}\right\} \Rightarrow m(\Varangle D B C)=m(\Varangle S Q R)$

$$
\begin{aligned}
\Varangle D B C= & \Varangle S Q R \\
& \text { q.e-d. }
\end{aligned}
$$

